Search results for "abiotic stre"

showing 10 items of 66 documents

Lichen rehydration in heavy metal polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated micro…

2014

Lichens are adapted to desiccation/rehydration and accumulate heavy metals, which induce ROS especially from the photobiont photosynthetic pigments. Although their mechanisms of abiotic stress tolerance are still to be unravelled, they seem related to symbionts' reciprocal upregulation of antioxidant systems. With the aim to study the effect of Pb on oxidative status during rehydration, the kinetics of intracellular ROS, lipid peroxidation and chlorophyll autofluorescence of whole Ramalina farinacea thalli and its isolated microalgae (Trebouxia TR1 and T. TR9) was recorded. A genetic characterization of the microalgae present in the thalli used was also carried out in order to assess possib…

ChlorophyllTrebouxiaLichensSoil ScienceBiologyPhotosynthesisRamalina farinaceaLipid peroxidationchemistry.chemical_compoundAscomycotaChlorophytaBotanyFluorometrySymbiosisEcology Evolution Behavior and SystematicsEcologyAbiotic stressWaterbiology.organism_classificationThallusLeadchemistrySpainChlorophyllBotànicaEnvironmental PollutantsLipid PeroxidationReactive Oxygen SpeciesDesiccation
researchProduct

BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress

2018

Beta vulgaris (sugar beet) is one of the most important industrial crops. Screening of a cDNA library for sugar beet genes able to confer cold tolerance upon overexpression in yeast identified a novel aquaporin, which we named BvCOLD1. The amino acid sequence of BvCOLD1 indicated that an acidic protein (pI 5.18) is similar to tonoplast intrinsic protein aquaporins. RNA expression analysis indicated that BvCOLD1 is expressed in all sugar beet organs. Confocal microscopy of a green fluorescent protein-tagged version localized BvCOLD1 in the endoplasmic reticulum in yeast and in plant cells. Experiments in yeast showed that BvCOLD1 has an important role in transporting several molecules, among…

0301 basic medicinePhysiologyAbiotic stressfungifood and beveragesAquaporinPlant ScienceAmaranthaceaeBiologybiology.organism_classificationYeastConserved sequence03 medical and health sciences030104 developmental biologyBiochemistryArabidopsisSugar beetPeptide sequencePlant, Cell & Environment
researchProduct

Cadmium-induced changes in soil biochemical characteristics of oat (Avena sativa L.) rhizosphere during early growth stages

2011

A microcosm was assembled to physically separate soil from roots and was used to study both the impact of living roots on the soil–plant system during early stages of growth and plant responses to abiotic stress. Oat (Avena sativa L.) seedlings were grown in the microcosm unit for 44 days. Twenty-three days after planting, 0.154 mg CdSO4/g dry soil was added. Plants grown in Cd-treated microcosms showed considerable inhibition of shoot growth rates, and leaf chlorophyll content. Soil microbial biomass C and respiration increased with plant age, and most of the measured biochemical indicators decreased with increasing distance from the soil–root interface, thus demonstrating the rhizosphere …

Rhizospherefood.ingredientChemistryAbiotic stressfungiSettore AGR/13 - Chimica Agrariafood and beveragesSoil ScienceSowingEnvironmental Science (miscellaneous)Rhizosphere Microbial activity Heavy metals Microbial biomass Cadmium OatSoil respirationAvenafoodAgronomyShootRespirationMicrocosmEarth-Surface Processes
researchProduct

Arabidopsis mutant dnd2 exhibits increased auxin and abscisic acid content and reduced stomatal conductance

2019

Arabidopsis thaliana cyclic nucleotide-gated ion channel gene 4 (AtCNGC4) loss-of-function mutant dnd2 exhibits elevated accumulation of salicylic acid (SA), dwarfed morphology, reduced hypersensitive response (HR), altered disease resistance and spontaneous lesions on plant leaves. An orthologous barley mutant, nec1, has been reported to over-accumulate indole-3-acetic acid (IAA) and to exhibit changes in stomatal regulation in response to exogenous auxin. Here we show that the Arabidopsis dnd2 over-accumulates both IAA and abscisic acid (ABA) and displays related phenotypic and physiological changes, such as, reduced stomatal size, higher stomatal density and stomatal index. dnd2 showed i…

0106 biological sciences0301 basic medicineHypersensitive responseStomatal conductanceDrought stressPhysiologyMutantArabidopsisPlant ScienceBOX PROTEIN TIR101 natural sciencesSIGNALING PATHWAYS03 medical and health scienceschemistry.chemical_compoundBarley nec1Abscisic acidAuxinGene Expression Regulation PlantArabidopsisLESION MIMIC MUTANTSGeneticsDISEASE RESISTANCEAuxinPLANTAbscisic acid1183 Plant biology microbiology virologyGENE-EXPRESSION2. Zero hungerchemistry.chemical_classificationbiologyIndoleacetic AcidsAbiotic stressArabidopsis Proteinsfungifood and beveragesGATED ION CHANNELSHordeumbiology.organism_classificationDroughts030104 developmental biologychemistryArabidopsis dnd2SALT-STRESSPlant StomataBiophysicsINNATE IMMUNITYAIR HUMIDITYSalicylic acid010606 plant biology & botany
researchProduct

Nuclear signaling of plant MAPKs

2018

This article is part of the research topic: Post-Translational Modifications in Plant Nuclear Signaling: Novel Insights into Responses to Environmental Changes; International audience; Mitogen-activated protein kinases (MAPKs) are conserved protein kinases in eukaryotes that establish signaling modules where MAPK kinase kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in turn activate MAPKs. In plants, they are involved in the signaling of multiple environmental stresses and developmental programs. MAPKs phosphorylate their substrates and this post-translational modification (PTM) contributes to the regulation of proteins. PTMs may indeed modify the activity, subcellular localization,…

0301 basic medicineMAPK/ERK pathwayabiotic stressmitogen-activated protein kinaseReviewPlant Sciencelcsh:Plant culture03 medical and health sciencesbiotic stress[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110nucleus;mitogen-activated protein kinase;phosphorylation;signaling;biotic stress;abiotic stress;developmentdevelopmentVegetal BiologybiologyKinasephosphorylationnucleusfood and beveragesBiotic stressSubcellular localizationCell biologyCytosol030104 developmental biologyMitogen-activated protein kinasebiology.proteinPhosphorylationSignal transductionsignalingBiologie végétale
researchProduct

Stress responses in citrus peel: Comparative analysis of host responses to Huanglongbing disease and puffing disorder

2015

Abstract A comparison between transcriptomic responses to puffing disorder and Huanglongbing disease was conducted to decipher differences and similarities in gene and pathway regulation induced by abiotic (puffing) and biotic stresses (Huanglongbing) in citrus peel tissues. We functionally analyzed two previously published datasets: the first obtained for the study of puffing disorder using an Affymetrix citrus microarray and the second consisting of a deep sequencing analysis of symptomatic responses to Huanglongbing disease. Transcriptomic data were mined using bioinformatic tools to highlight genes and pathways playing a key role in modulating responses to different types of stress in c…

GeneticsMicroarrayStreAbiotic stressCitrufood and beveragesHuanglongbingHorticultureBiotic stressBiologyPuffingDeep sequencingTranscriptomeBiochemistryFruitSettore AGR/07 - Genetica AgrariaHeat shock proteinTranscriptomicsSecondary metabolismGeneScientia Horticulturae
researchProduct

Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species

2020

As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visuali…

0106 biological sciences0301 basic medicinePlant ScienceProtein degradationBiologyGenes Plant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalSettore AGR/07 - Genetica AgrariaMYBSecondary metabolismAbscisic acidGeneAbiotic componentGeneticsabiotic-stresses differentially expressed genes leaves meta-analysis RNA-Seq transcriptomic.Abiotic stressGene Expression Profilingfungifood and beveragesPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryCinnamoyl-CoA reductaseAgronomy and Crop Science010606 plant biology & botany
researchProduct

Current Experience with Application of Metal-based Nanofertilizers

2019

Agriculture is one of the many fields in which nanotechnology is currently applied. At the nano-scale, materials exhibit different properties mainly due to the reduced molecular size which allows different interactions between molecules. Nowadays, the agricultural sector demands methods that not only increase crop productivity, but are also sustainable and produce less environmental impact. Large-scale application of chemical fertilizers is common in farming with the aim of increasing productivity. The use of large doses of fertilizers, however, causes more harm than good. Chemically intensive agriculture disturbs the soil-mineral balance, pollutes soil, water and air, and makes lands less …

0106 biological sciences0301 basic medicineNutrient managementAbiotic stressIntensive farmingbusiness.industryAgricultural engineering01 natural sciencesCrop productivityEnhanced bioavailability03 medical and health sciences030104 developmental biologylcsh:TA1-2040AgricultureSustainable agriculturelcsh:Engineering (General). Civil engineering (General)businessProductivity010606 plant biology & botanyMATEC Web of Conferences
researchProduct

Current view of nitric oxide-responsive genes in plants

2009

International audience; Significant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive …

0106 biological sciencesPlant ScienceBiology01 natural sciencesNitric oxide synthase-like enzymeTranscriptomic analysisTranscriptome03 medical and health sciencesL-NAME[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyTranscription (biology)Complementary DNAArabidopsisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGeneTranscription factor030304 developmental biologyGenetics0303 health sciencesBiotic and abiotic stressesNitric oxide-responsive genesPromoterNitric oxideGeneral Medicinebiology.organism_classificationStress biotiqueDNA microarrayAgronomy and Crop Science010606 plant biology & botany
researchProduct

Genetic Engineering Strategies for Abiotic Stress Tolerance in Plants

2015

Crop plants are affected by a variety of abiotic stresses such as salinity, drought, extreme temperatures, and oxidative stress and cause a significant yield loss (more than 50 %). In the near future, these abiotic stresses might increase because of global climate change. Abiotic stresses lead to dehydration or osmotic stress through reduced availability of water for vital cellular functions and maintenance of turgor pressure and also result in high production of reactive oxygen species (ROS). Plants are evolved with various mechanisms such as changes in cellular and metabolic processes to cope with the stress condition. Recent developments in molecular genetics have contributed greatly to …

Abiotic componentLate embryogenesis abundant proteinsOsmotic shockOsmolyteAbiotic stressfood and beveragesOsmoprotectantGenetically modified cropsBiotic stressBiologyCell biology
researchProduct